I/O 模型

I/O 模型简单的理解:就是用什么样的通道进行数据的发送和接收,很大程度上决定了程序通信的性能。

Java 共支持 3 种网络编程模型/IO 模式:BIO、NIO、AIO

Java BIO : 同步并阻塞(传统阻塞型),服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器 端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销 【简单示意图】

BIO模型

Java NIO : 同步非阻塞,服务器实现模式为一个线程处理多个请求(连接),即客户端发送的连接请求都会注 册到多路复用器上,多路复用器轮询到连接有 I/O 请求就进行处理 【简单示意图】

NIO模型

Java AIO(NIO.2) : 异步非阻塞,AIO 引入异步通道的概念,采用了 Proactor 模式,简化了程序编写,有效的请求才启动线程,它的特点是先由操作系统完成后才通知服务端程序启动线程去处理,一般适用于连接数较 多且连接时间较长的应用。

适用场景分析

BIO 方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序简单易理解。

NIO 方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,弹幕系统,服务器间通讯等。编程比较复杂,JDK1.4 开始支持。

AIO 方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用 OS 参与并发操作,编程比较复杂,JDK7 开始支持。(目前尚未流行)

img

BIO 基本介绍

Java BIO 就是传统的 java io 编程,其相关的类和接口在 java.io

BIO(blocking I/O) : 同步阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需 要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,可以通过线程池机制改善(实现多个客户连接服务器)。

BIO 方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4 以前的唯一选择,程序简单易理解

BIO 编程流程的梳理

  1. 服务器端启动一个ServerSocket
  2. 客户端启动Socket对服务器进行通信,默认情况下服务器端需要对每个客户建立一个线程与之通讯
  3. 客户端发出请求后, 先咨询服务器是否有线程响应,如果没有则会等待,或者被拒绝
  4. 如果有响应,客户端线程会等待请求结束后,在继续执行

应用实例

image-20201101215155324

image-20201101215345404

  1. 使用BIO模型编写一个服务器端,监听6666端口,当有客户端连接时,就启动一个线程与之通讯。
  2. 要求使用线程池机制改善,可以连接多个客户端.
  3. 服务器端可以接收客户端发送的数据(telnet 方式即可)。

image-20201101155814490

image-20201101155855033

运行成功后会serverSocket.accept();会阻塞等待客户端连接。通过telent 127.0.0.1 6666连接

image-20201101160034244

客户端连接后read()方法阻塞,等待客户端发送数据。

image-20201101160319432

问题分析

  1. 每个请求都需要创建独立的线程,与对应的客户端进行数据 Read,业务处理,数据 Write
  2. 当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大。
  3. 连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在 Read 操作上,造成线程资源浪费

由于客户端连接和服务端的处理之间的对应关系是1:1,如果遇到任务比较大,处理比较慢。或者并发量比较大的情况下,系统会创建大量的线程。从而导致服务器线程暴增,性能急剧下降,甚至宕机。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
public class BIOServer {

public static void main(String[] args) throws Exception {

//线程池机制
//思路
//1. 创建一个线程池
//2. 如果有客户端连接,就创建一个线程,与之通讯(单独写一个方法)
ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
//创建ServerSocket
ServerSocket serverSocket = new ServerSocket(6666);

System.out.println("服务器启动了");

while (true) {
System.out.println("线程信息 id =" + Thread.currentThread().getId() + "名字=" + Thread.currentThread().getName());
//监听,等待客户端连接
System.out.println("等待连接....");
final Socket socket = serverSocket.accept();
System.out.println("连接到一个客户端");

//handler(socket);

//就创建一个线程,与之通讯(单独写一个方法)
newCachedThreadPool.execute(new Runnable() {
public void run() { //我们重写
//可以和客户端通讯
handler(socket);
}
});
}
}

//编写一个handler方法,和客户端通讯
public static void handler(Socket socket) {

try {
System.out.println("线程信息 id =" + Thread.currentThread().getId() + " 名字=" + Thread.currentThread().getName());
byte[] bytes = new byte[1024];
//通过socket 获取输入流
InputStream inputStream = socket.getInputStream();

//循环的读取客户端发送的数据
while (true) {

System.out.println("线程信息 id =" + Thread.currentThread().getId() + " 名字=" + Thread.currentThread().getName());

System.out.println("wait read....");
int read = inputStream.read(bytes);
System.out.println("reading....");
if(read != -1) {
System.out.println(new String(bytes, 0, read
)); //输出客户端发送的数据
} else {
break;
}
}

}catch (Exception e) {
e.printStackTrace();
}finally {
System.out.println("关闭和client的连接");
try {
socket.close();
}catch (Exception e) {
e.printStackTrace();
}

}
}
}